Today’s problem of my personal DevAdvent 2022 is about calculating percentages, population and number series trends. Or, to put it simply, how to make a simple prediction about the increase in population of a small town?
The Problem: Growth of a Population
link to the Kata

In a small town the population is p0 = 1000
at the beginning of a year. The population regularly increases by 2 percent
per year and moreover 50
new inhabitants per year come to live in the town. How many years does the town need to see its population greater or equal to p = 1200
inhabitants?
At the end of the first year there will be:
1000 + 1000 * 0.02 + 50 => 1070 inhabitants
At the end of the 2nd year there will be:
1070 + 1070 * 0.02 + 50 => 1141 inhabitants (** number of inhabitants is an integer **)
At the end of the 3rd year there will be:
1141 + 1141 * 0.02 + 50 => 1213
It will need 3 entire years.
More generally given parameters:
p0, percent, aug (inhabitants coming or leaving each year), p (population to equal or surpass)
the function nb_year
should return n
number of entire years needed to get a population greater or equal to p
.
aug
is an integer, percent
a positive or null floating number, p0
and p
are positive integers (> 0
)
Examples:
nb_year(1500, 5, 100, 5000) -> 15
nb_year(1500000, 2.5, 10000, 2000000) -> 10
Note:
Don’t forget to convert the percent parameter as a percentage in the body of your function: if the parameter percent is 2 you have to convert it to 0.02.
My Solution

I decided to solve this problem in two ways. The first solution is the most simple. It is a simple while
loop that will iterate until the condition is met. The condition is that the population is greater than or equal to the target population.
export const nbYear = (
p0: number,
percent: number,
aug: number,
p: number
): number => {
let pop = p0;
let perc = percent / 100;
let year = 0;
while (pop < p) {
pop = pop + pop * perc + aug;
pop = Math.trunc(pop);
++year;
}
return year;
};
The most difficult point is to understand the problem well. Since we are talking about population, the number must be an integer. Writing 0.25 inhabitants is meaningless. For this I have to use the Math.trunc() method to truncate the number of the expected population.
I can write the same function a little more concise.
function nbYear(p0, percent, aug, p) {
let year = 0;
while (p0 < p) {
p0 = Math.trunc(p0 + (p0 * percent) / 100 + aug);
++year;
}
return year;
}
Complex Solution

The second solution is a little more complex. It is a recursive function that will call itself until the condition is met. The condition is that the population is greater than or equal to the target population.
export const nbYear = (
p0: number,
percent: number,
aug: number,
p: number
): number => {
if (p0 >= p) return 0;
return (
1 + nbYear(Math.trunc(p0 + p0 * (percent / 100) + aug), percent, aug, p)
);
};
I can try to make this function a little clearer by dividing it into two. The new version looks like this
const calculatePop = (p0, percent, aug, p) =>
Math.trunc(p0 + p0 * (percent / 100) + aug);
function nbYear(p0, percent, aug, p) {
const annualCount = calculatePop(p0, percent, aug, p);
if (annualCount >= p) return 1;
return 1 + nbYear(annualCount, percent, aug, p);
}
Conclusion
Today’s problem is very simple. I decided to solve it in two ways. The first is the most simple and the second is a little more complex. I hope you liked it. See you tomorrow for the next problem.